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Comment on “Structural Prediction and Phase

Transformation Mechanisms in Calcium at High

Pressure”

To resolve the discrepancy between experiment [1] and
theory [2] regarding the stability of the simple cubic (sc)
phase of Ca under pressure, Yao et al. [3] have performed
metadynamics simulations and enthalpy analysis. They
concluded that the sc structure becomes thermodynami-
cally stable around 40 GPa and 50 K due to anharmonic
free energy contributions. Here we show that this conclu-
sion is an artifact of the 2-electron projector augmented
wave (PAW) pseudopotential (PP) used in [3]. When
semi-core states are included as valence electrons, the re-
sult is reversed and the sc structure is not preferred even
at room temperature.

First, we would like to point out that it is not sufficient
to use a 2-electron PP of Ca to explore its anharmonic
free energy surface. In Fig. 1(a) we show the phonon
dispersion curves of sc Ca at 45 GPa obtained with a 10-
electron norm-conserving PP (see Ref. [2] for computa-
tional details). The frequencies at high-symmetry points
are also computed with 10- and 2-electron PAW PP’s by
diagonalizing the dynamical matrix of an 8-atom super-
cell. The 2-electron PP results disagree with the rest and
do not even yield imaginary frequencies at the X and M
high-symmetry points.

We have investigated the stability of the sc phase at
finite-temperature by comparing its Gibbs free energy
with that of the previously reported Pnma structure [2]
and a new I41/amd structure, which we obtained by
a random search method [4]. Yao et al. [3] have also
found this structure using a genetic algorithm search. To
compute free energies, we performed molecular dynamics
(MD) simulations with the VASP code [5, 6] in a canon-
ical ensemble on supercells consisting 32 and 64 atoms.
Bigger supercells with 108 atoms for I41/amd and 125
atoms for sc are also considered to verify the results. The
calculations were performed with 2- and 10-electron PAW
PP’s, 11 Ha plane-wave cutoff, and the PW91 gener-
alized gradient approximation parameterization for the
exchange-correlation functional. The Brillouin zone was
sampled at the Γ-point for the 108- and 125-atom super-
cells, and 2 × 2 × 4 and 2 × 2 × 2 Monkhorst-Pack
grids were used for the 32- and 64-atom supercells, re-
spectively. The equations of motion were integrated with
ionic time steps of 1 fs and the ionic temperature was
controlled with a Nosé-Hoover thermostat. Initially, the
structures were allowed to equilibrate for 2 ps at 300 K.
The simulations were then carried out for 3 ps to gather

statistical information.

Using the same simulation parameters as in [3], the sc
structure appears to have the lowest enthalpy at 300K
as shown in Fig. 1(b). However, when we change the
PP to include semi-core states, I41/amd becomes more
stable. Since entropic effects are essential for describing
temperature-drived transition, we have also computed
the Gibbs free energies of the candidate structures. The
phonon entropy contribution is obtained from the vibra-
tional density of states, which is the Fourier transform
of the velocity autocorrelation function. As shown in
Fig. 1(c), a 2-electon PP leads to sc having the low-
est Gibbs free energy, while I41/amd is preferred with
the 10-electron PP. We obtained the same result with
the larger supercell simulations as well. Comparing Fig’s
1(b) and (c), it is interesting to note that anharmonic
effects appear to play a significant role for the relative
stability only with the 10-electron PP.

Our conclusion is that the stability of sc Ca has not
been demonstrated theoretically yet and the discrepancy
between theory and experiment remains unresolved. Fur-
ther studies which may require the use of more accu-
rate methods and measurements are necessary. A possi-
ble explanation could include fluctuations and distortions
among several quasi-degenerate structures, as proposed
by Yin et al. [7].
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FIG. 1: (a) Phonon dispersion curves from linear response theory (10-electron OPIUM PP) and frequencies at X and M

calculated with a 2-electron PAW PP (diamonds) and a 10-electron PAW PP (circles). Imaginary frequencies are shown as
negative values. (b) Enthalpies and (c) Gibbs free energies relative to sc from 32-atom cell MD at 300K. Dashed and solid lines
indicate relative energies with respect to sc obtained with 2- and 10-electron PP’s, respectively.
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